155 research outputs found

    Tunable plasma wave resonant detection of optical beating in high electron mobility transistor

    Get PDF
    We report on tunable terahertz resonant detection of two 1.55 µm cw-lasers beating by plasma waves in AlGaAs/InGaAs/InP high-electron-mobility transistor. We show that the fundamental plasma resonant frequency and its odd harmonics can be tuned with the applied gate-voltage in the range 75-490 GHz. The observed frequency dependence on gate-bias is found to be in good agreement with the theoretical plasma waves dispersion law.Comment: Applied Physics Letters to be published (2006) -

    Pressure and temperature driven phase transitions in HgTe quantum wells

    Full text link
    We present theoretical investigations of pressure and temperature driven phase transitions in HgTe quantum wells grown on CdTe buffer. Using the 8-band \textbf{k\cdotp} Hamiltonian we calculate evolution of energy band structure at different quantum well width with hydrostatic pressure up to 20 kBar and temperature ranging up 300 K. In particular, we show that in addition to temperature, tuning of hydrostatic pressure allows to drive transitions between semimetal, band insulator and topological insulator phases. Our realistic band structure calculations reveal that the band inversion under hydrostatic pressure and temperature may be accompanied by non-local overlapping between conduction and valence bands. The pressure and temperature phase diagrams are presented.Comment: 9 pages, 8 figures + Supplemental material (5 pages

    Terahertz Radiation Detection by Field Effect Transistor in Magnetic Field

    Full text link
    We report on terahertz radiation detection with InGaAs/InAlAs Field Effect Transistors in quantizing magnetic field. The photovoltaic detection signal is investigated at 4.2 K as a function of the gate voltage and magnetic field. Oscillations analogous to the Shubnikov-de Haas oscillations, as well as their strong enhancement at the cyclotron resonance, are observed. The results are quantitatively described by a recent theory, showing that the detection is due to rectification of the terahertz radiation by plasma waves related nonlinearities in the gated part of the channel.Comment: 4 pages, 3 figure

    Current-induced enhancement of photo-response in graphene THz radiation detectors

    Get PDF
    Thermoelectric readout in a graphene terahertz (THz) radiation detector requires a p-n junction across the graphene channel. Even without an intentional p-n junction, two latent junctions can exist in the vicinity of the electrodes/antennas through the proximity to the metal. In a symmetrical structure, these junctions are connected back-to-back and therefore counterbalance each other with regard to rectification of the ac signal. Because of the Peltier effect, a small dc current results in additional heating in one and cooling in another p-n junction, thereby breaking the symmetry. The p-n junctions then no longer cancel, resulting in a greatly enhanced rectified signal. This allows simplifying the design and controlling the sensitivity of THz radiation detectors

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape

    Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells

    Full text link
    We investigate experimentally transport in gated microsctructures containing a band-inverted HgTe/Hg_{0.3}Cd_{0.7}Te quantum well. Measurements of nonlocal resistances using many contacts prove that in the depletion regime the current is carried by the edge channels, as expected for a two-dimensional topological insulator. However, high and non-quantized values of channel resistances show that the topological protection length (i.e. the distance on which the carriers in helical edge channels propagate without backscattering) is much shorter than the channel length, which is ~100 micrometers. The weak temperature dependence of the resistance and the presence of temperature dependent reproducible quasi-periodic resistance fluctuations can be qualitatively explained by the presence of charge puddles in the well, to which the electrons from the edge channels are tunnel-coupled.Comment: 8 pages, 4 figures, published versio

    Electrical excitation of shock and soliton-like waves in two-dimensional electron channels

    Full text link
    We study electrical excitation of nonlinear plasma waves in heterostructures with two-dimensional electron channels and with split gates, and the propagation of these waves using hydrodynamic equations for electron transport coupled with two-dimensional Poisson equation for self-consistent electric potential. The term related to electron collisions with impurities and phonons as well as the term associated with viscosity are included into the hydrodynamic equations. We demonstrate the formation of shock and soliton-like waves as a result of the evolution of strongly nonuniform initial electron density distribution. It is shown that the shock wave front and the shape of soliton-like pulses pronouncedly depend on the coefficient of viscosity, the thickness of the gate layer and the nonuniformity of the donor distribution along the channel. The electron collisions result in damping of the shock and soliton-like waves, while they do not markedly affect the thickness of the shock wave front.Comment: 9 pages, 11 figure
    corecore